MoFA Agents
MoFA智能体模版
构建智能体有一定的设计模式(Design Pattern),MoFA提供一系列的设计模式的实现,供开发者作为模版使用。
MoFA组合智能体
基于Dora-RS框架构建的MoFA智能体,实质上就是Dora-RS Dataflow。两个智能体之间可以通过数据连接进行组合,从而形成组合智能体。
在上述的self_refine Agent模版和下面将要介绍的服务智能体和案例,都是MoFA组合智能体。
MoFA服务智能体
智能体往往需要需要一些服务,包括检索增强生成,记忆,使用外部工具和任务规划和分解等。MoFA认为:Everything Agent。我们以MoFA智能体的方式提供RAG智能体,记忆智能体,规划智能体和行动智能体。开发者可以使用这些已经实现的服务智能体,与自己的智能体相连接组合从而获得相应的服务。MoFA也可以集成第三方的服务智能体,供开发者按照不同的需求使用。
- rag
- memory
- action
- planning
Nesting Design Patterns of AI Agents
AI agents are intelligent software applications with various design patterns:
- LLM Inference: Using large language models for basic inference
- Customized Prompt: Tailoring system prompts for specific agents
- Reflection Pattern: Agents capable of self-review and improvement
- Actor Pattern: Agents with external tool and resource capabilities
- ReAct Pattern: Combining reflection and tool usage
- Multi-Agent Collaboration: Specialized agents working together
Agent Kernel Services
MoFA provides core services to agents, including:
- Memory management
- Task planning
- Knowledge base integration
- RAG (Retrieval-Augmented Generation)
- Action capabilities
Composition-Based Architecture
Composition allows assembling elements into new entities without changing original components, enabling developers to build and recombine agents for new functionalities.
Dataflow-Driven Approach
MoFA employs a dataflow-driven method focusing on data dependencies rather than business rules, simplifying and enhancing modularity.